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SUMMARY

The VOF method is adopted for the ®nite element analysis of transient ¯uid ¯ow with a free surface. In
particular, an adaptation technique for generating an adaptive grid is incorporated to capture a higher resolution
of the free surface con®guration. An adaptive grid is created through the re®nement and mergence of elements.
In this domain the elements in the surface region are made ®ner than those in the remaining regions for more
ef®cient computation. Also, three techniques based on the VOF method are newly developed to increase the
accuracy of the analysis, namely the ®lling pattern, advection treatment and free surface smoothing techniques.
Using the proposed numerical techniques, radial ¯ow with a point source and the collapse of a dam are analysed.
The numerical results agree well with the theoretical solutions as well as with the experimental results. Through
comparisons with the numerical results of several cases using different grids, the ef®ciency of the proposed
technique is veri®ed. # 1998 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to understand the physical phenomena of general ¯uid ¯ow, transient ¯uid ¯ow with a free

surface has long been subject to extensive investigations. For the analysis of material manufacturing

processes such as casting and polymer processing, the method of such analysis is widely employed.

For the numerical analysis of transient ¯uid ¯ow with a free surface, three approaches have been

developed over the years, namely the Lagrangian,1,2 ALE (arbitrary Lagrangian±Eulerian)3± 5 and

Eulerian6±19 methods.

In the Lagrangian method a moving mesh system is used and the formulation does not include the

non-linear convection terms. If a good quality of mesh is maintained, the numerical results of

velocity, pressure and predicted position of the free surface are very accurate. When the ¯ow of the

¯uid is very complex or folding of the ¯ow occurs, remeshing techniques requiring the knowledge
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and experience of an expert are needed, since the mesh becomes severely distorted. The ALE method

combines the merits of the Lagrangian and Eulerian methods to increase the accuracy of the

numerical results. However, remeshing is still required for general cases. In the Eulerian method the

Eulerian formulation and a ®xed mesh system are used. Therefore treatment of the non-linear terms

of the governing equations is necessary, but no remeshing procedure for a distorted mesh is needed.

The Eulerian method is widely used for the analysis of general and complex problems, since the

remeshing procedure is not required. Then the element domain to be computed by the FEM (®nite

element method) can be composed of the initial mesh11±14 or a new mesh system6±10,15±19 regenerated

from the initial mesh.

For dividing the ¯uid and empty regions of the total domain, the MAC (marker-and-cell) method

of Harlow and Welch6 and the VOF (volume-of-¯uid) method of Hirt et al.9 have been typically used.

In the MAC method the total domain is divided into ¯uid and empty regions by distinguishing

whether a marker exists or not. A marker has no mass and moves according to the velocity ®eld. The

position of the free surface and the ¯ow phenomena inside the ¯uid region are described by the

distribution of markers. The MAC method requires suf®cient memory size in order for the markers to

be distributed in the ¯uid region.

In the VOF method, fractional volumes are used to divide the total domain. The values of the

fractional volumes in the ®lled, partially ®lled and empty cells are unity, between zero and unity, and

zero respectively. In the VOF method, only one scalar value of the fractional volume is required for

each cell and the fractional volume at the current time step in each cell is calculated using the velocity

®eld and fractional volume of the previous time step. The VOF method is a very ef®cient method for

analysing transient ¯uid ¯ow with a free surface. However, it has drawbacks in that the position of the

free surface is predicted only by the scalar fractional volume value and the ®lling state of its

neighbour cells, de®ned as cells sharing a common side.

In this study, for the ®nite element analysis of transient ¯uid ¯ow with a free surface, the VOF

method in conjunction with the Eulerian method is used. The element domain is composed of a

quadrilateral mesh system and the grid is composed of quadrilateral elements. The element domain is

used for FEM analysis, while the grid is used for calculation of the fractional volume and generation

of the element domain. The element domain is generated by using selected elements from the grid for

ef®cient computation. In previous studies the grid could not be adaptively altered during the analysis.

Therefore the quality of the initial grid was very important for numerical analysis, and, in general, to

increase the accuracy of the numerical results, the number of initial elements should be increased.

However, increasing the number of elements in the initial grid increases the required computation

time and memory size by geometric progression, since the total number of elements in the element

domain is increased.

In this paper, in particular, an adaptive grid is incorporated with the FEM and VOF method to

capture a higher resolution of the free surface con®guration. The element domain is generated and the

free surface is predicted by using an adaptive grid where the elements are regenerated ef®ciently at

each time step. The adaptive grid for the current time step is generated by re®ning and merging the

elements in the grid for the previous time step. In an adaptive grid the elements in the surface region

are ®ner than those in other regions. Also in this study, three techniques based on the VOF method are

developed to increase the accuracy of the analysis. The ®rst approach is ®lling pattern technique to

predict the free surface by considering the geometric shape of each quadrilateral element. The second

approach is the advection treatment technique to calculate the ¯uid advection iteratively and forcedly.

The third approach is the smoothing technique to improve the non-smoothness of the predicted free

surface. The Navier±Stokes and continuity equations form the governing equations, and for the FEM

formulation the penalty and predictor±corrector methods are used. By using the proposed analysis

techniques, radial ¯ow with one point source and the collapse of a dam are analysed and compared
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with theoretical solutions and experimental results. Also, to verify the ef®ciency of this method,

numerical analyses are accomplished for several cases using different grids.

2. GOVERNING EQUATIONS

The governing equations for transient incompressible viscous ¯ow with a free surface are the

continuity equation

@ui

@xi

� 0 in O �1�

and the Navier±Stokes equation

r
@ui

@t
� ruj

@ui

@xi

� @

@xj

sji�u� � rfi in O; �2�

where

sij � ÿpdij � 2mdij; dij �
1

2

@ui

@xj

� @uj

@xi

 !
:

In the above equations, t, ui, p, r, m and fi are the time, velocity component in the xi-direction,

pressure, density, dynamic viscosity and body force respectively and sij and dij denote the stress and

strain tensors respectively.

On the free surface boundary @Ofront the equilibrium condition for stress, i.e.

sn � ÿp� 2mair

@un

@xn

� 0 on @Ofront;

t � mair

@un

@xt

� @ut

@xn

� �
� 0;

�3�

is imposed, where sn, t, mair and subscripts `n' and `t' denote the normal stress, shear stress, dynamic

viscosity of air and normal and tangential directions of the free surface respectively. On the free

surface the surface tension, viscous stress and gas pressure are assumed to be zero in this study. Then

the following free-slip condition is applied to the wall boundary @Owall,

uw
n � 0 on @Owall; �4�

where uw
n is the normal velocity component at the wall boundary, and the following essential

boundary condition is applied to the in¯ow boundary @Oinflow,

ui � ui on @Oinflow; �5�

where ui is the velocity component which is given at the in¯ow boundary.

The initial conditions are given by specifying the velocity values at the initial time:

ui � u0
i on O at t � 0; �6�

where u0
i is the initial velocity component.
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3. FINITE ELEMENT FORMULATION

The Navier±Stokes and continuity equations are discretized by using the penalty function formulation

and Galerkin formulation20,21 for the four-node quadrilateral element. In the penalty function

formulation of (1) and (2) the constitutive equation is replaced by

sij � ldkkdij � 2mdij; �7�
where l is the penalty constant, taken to be positive and suf®ciently large.

In the Galerkin formulation of (2) and (7) the weak form is obtained as�
O
�r_ui �ui � rujui;j �ui � luj;j �ui;i � 2mui;j �ui;j�dO �

�
O
rfi �ui dO: �8�

Then the domain and velocity are discretized as

uk � UklNl and �ui � �UiaNa on Oe; �9�
where uk and �ui are the velocity component and weighting function respectively and Ukg and �Uia are

the nodal values of uk and �ui respectively.

The weak form is discretized as

�Uia�Miajb
_Ujb � CiajbUjb � N �ui�iajb� � �UiaFia; �10�

where

Miajb �
�
rNaNbdij dO; Ciajb �

�
�lNa; iNb;j � mNa;jNb;i � mdijNa;kNb;k� dO;

N �ui�iajb �
�
rdijNaukui;k dO; Fia �

�
Nafi dO:

Then the ®nite element equation becomes

Miajb
_Ujb � CiajbUjb � N �ui�iajb � Fia: �11�

To solve equation (11), the predictor±corrector method20 is used. The algorithm of the predictor±

corrector method is summarized as follows.

Predictor

~un�1 � un � �1ÿ g�Dtan;

u
�0�
n�1 � ~un�1:

�12�

Corrector

From l � 0 to Lf�Miajb � gDtCiajb�U �l�1�
jb�n�1�

� Miajb
~Ujb�n�1� � gDt�Fia ÿ N �u�l�i�n�1� �iajb�g; �13�

un�1 � u
�L�1�
n�1 ;

an�1 � �un�1 ÿ ~un�1�=gDt: �14�
Here un and an are the velocity and acceleration at the nth time iteration respectively, Dt is the time

step, g is a positive parameter which governs the stability and accuracy, and l and L are the iteration

number and total number of corrector iterations respectively.
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4. COMPUTATIONAL PROCEDURE

As shown in Figure 1, in the ®rst stage of numerical analysis an initial grid is generated and values for

the order of surface re®nement and order of re®nement expansion, material properties, boundary

conditions and initial fractional volumes are input. Then the time step is increased and in each

element the ®lling pattern is selected and the free surface is predicted by the ®lling pattern and

smoothing techniques. In the next stage, by the re®nement and mergence procedure an adaptive grid

is generated, which also leads to the creation of the element domain for FEM analysis. Then by FEM

analysis the velocity and pressure ®elds are obtained and the ¯ow rate in each element is calculated.

Subsequently the procedure of advection treatment is accomplished and the fractional volume in each

element is obtained. These procedures are iterated until the current ®lling time reaches the total time.

4.1. Filling pattern in an element

In the Eulerian method, information on the shape of the free surface in an element is required to

calculate the ¯ow rate in the element. In the VOF method of Hirt and Nichols10 the free surface is

represented by horizontal and vertical line segments in square or rectangular cells. In Youngs'

method22 the line segment of the free surface is sloped in square cells. In the FLAIR method of

Ashgriz and Poo18 the line segments are drawn at the cell sides. In the reconstruction of the ¯uid

volume by the code FIDAP23 the ®lling shape is represented by rectangles or squares in the local

element co-ordinate system for quadrilateral elements. In this study, to predict the free surface in a

quadrilateral element, the ®lling pattern technique is proposed.

In the ®lling pattern technique the predicted free surface in a quadrilateral element is represented

by a line segment with a slope. The predicted position of the free surface is calculated by using the

fractional volume values under the assumption that the side wet ratios on each side or diagonal line to

be partially wetted are constant. The side wet ratio is de®ned as

f b
i � lw

i =li; �15�

Figure 1. Flow chart of computational procedure.
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where f b, l and l w
i are the side wet ratio on side i, the total length of side i and the length of the wet

region on side i respectively. The side wet ratio is used in calculating the side ¯ow rate. The ®lling

pattern technique can be viewed as being composed of two steps. First a ®lling pattern is determined

among eight ®lling patterns. Then the predicted position of the free surface and the side wet ratio are

calculated in each ®lling pattern. The ®lling pattern in an element depends only upon its ®lling state

and the ®lling state of its neighbour elements, which are de®ned as elements sharing a common side,

as shown in Figure 2. Then the predicted position of the free surface is calculated by the equations for

geometrical shape considerations as shown in Figure 3. In Figure 3 the area of the hatched region in

each ®lling pattern is equal to the volume of the ¯uid to be partially ®lled in an element. In all the

®lling patterns the side wet ratios of the sides to be partially wetted are categorized as follows:

case I; aI � 0;

case II; aII � 1;

case III; a2

! � a4

!
a2

III ÿ �a1

! � a2

! ÿ a1

! � a4

!�aIII � 2fV � 0;

case IV; aIV �
2fV

a1

! � a2

!

 !
;

s

case V; aV � 1ÿ 2� f ÿ 1�V
a4

! � a3

!

 !
;

s

case VI; aVI �
2fV

a01
!
� a02
!
� a02
!
� a03
!
� a03
!
� a04
!
� a04
!
� a01
!

0@ 1A;
vuut

case VII; aVII � 1ÿ 2�1ÿ f �V
a01
!
� a02
!
� a02
!
� a03
!
� a03
!
� a04
!
� a04
!
� a01
!

0@ 1A;
vuut

case VIII; aVIII �
2fV

�a1

! ÿ a3

!�� as

! ;

�16�

where f is the fractional volume and V the total volume of the element. Then, as shown in Figure 3,

the side wet ratios for all sides can be expressed in the following categories:

case I; f b
1 � aI; f b

2 � aI; f b
3 � aI; f b

4 � aI;

case II; ; f b
1 � aII; f b

2 � aII; f b
3 � aII; f b

4 � aII;

case III; f b
1 � 1; f b

2 � aIII; f b
3 � 0; f b

4 � aIII;

case IV; f b
1 � aIV; f b

2 � aIV; f b
3 � 0; f b

4 � 0 �17�
case V; f b

1 � 1; f b
2 � 1; f b

3 � aV; f b
4 � aV;

case VI; f b
1 � 0; f b

2 � 0; f b
3 � 0; f b

4 � 0;

case VII; f b
1 � 1; f b

2 � 1; f b
3 � 1; f b

4 � 1;

case VIII; f b
1 � aVIII; f b

2 � 0; f b
3 � aVIII; f b

4 � 0:

1132 J. H. JEONG AND D. Y. YANG

Int. J. Numer. Meth. Fluids 26: 1127±1154 (1998) # 1998 John Wiley & Sons, Ltd.



Figure 3. Geometrical description of ®lling patterns

Figure 2. Filling patterns according to fractional volume and ®lling state in neighbour elements
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4.2. Flow rate in an element

In the proposed numerical method, four-node quadrilateral elements for predicting the free surface

and FEM analysis are used. The elements are sorted into three categories according to the fractional

volume and the ¯ow rate (Figure 4):

(i) internal element ( f� 1 and _Qin � 0)

(ii) surface element (0 4 f 4 1 and _Qin 6� 0)

(iii) outer element ( f� 0 and _Qin � 0)

where f is the fractional volume and _Qin the ¯ow rate of the element. The elements in the element

domain are generated from the co-ordinates and connectivity of the internal and surface elements.

The locations of the internal, surface and outer elements are inside, on the surface of and outside the

¯uid region respectively. The internal element is a ®lled element where the ¯ow rate is zero. The

surface element is a ®lled, partially ®lled or empty element where the ¯ow rate is not zero, since the

surface element includes the free surface. Therefore the element in which calculation of the ¯ow rate

is required is the surface element. The outer element is then an empty element in which the ¯ow rate

is zero.

The ¯ow rate in a surface element is calculated by summation of the side ¯ow rates (the ¯ow rate

of ¯uid across a side) on the four sides of the element. To calculate the side ¯ow rate, the velocity

®eld of the wetted side is required. It can be obtained by linear interpolation of the velocities at the

vertex nodes. The side ¯ow rate on a side is also obtained by summation of the out¯ow and in¯ow

¯ow rates across the side. The side out¯ow and in¯ow rates are the ¯ow rates to be calculated in the

regions where the normal component velocities on the sides are negative and positive respectively.

When using the donor±acceptor concept of Hirt et al.,9 the side out¯ow and in¯ow rates must be

calculated in an element and its neighbour element respectively. The absolute value of the side in¯ow

rate in an element is equal to that of the side out¯ow rate in its neighbour element, with the signs

being opposite. As shown in Figure 5, the side out¯ow rate, which is a negative value, is calculated as

_qs �
�
@On

V
! � n

!
ds; �18�

where _qs, V
!

and n
!

denote the side out¯ow rate, the velocity vector and the inward unit vector

perpendicular to the side respectively, @On indicates the wetted region on the side of the element,

where V
! � n

!
is negative. In addition, for the sake of numerical stability, the speci®c advection that the

¯uid volume transfers from the partially ®lled element to the empty element is constrained. This

Figure 4. De®nition of elements according to fractional volume and ¯ow rate
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technique of constraining the speci®c advection of the ¯uid volume was proposed by Hirt et al.9 Then

the side ¯ow rate _Qs on a side is obtained from

_Qs � _qs ÿ _qsa

; �19�
where _qsa

is the side out¯ow rate in a neighbour element. Finally, the ¯ow rate _Qin in an element can

be expressed as

_Qin �
P4
i�1

_Qs
i ; �20�

where _Qs
i is the side ¯ow rate through side i of the element.

4.3. Advection treatment

The advection of the ¯uid volume can be calculated from the assumption that the change in the

fractional volume is proportional to the ¯ow rate in the element during each small time step. With this

assumption the fractional volume fn can be expressed as

fn � fnÿ1 � Dtf _Qin=V ; �21�
where fn and fnÿ1 are the fractional volumes of an element time steps at n and n� 1 respectively, Dt f

is the advection time step, V is the total volume of the element and _Qin is the ¯ow rate in the element.

When using the prescribed advection time step, the fractional volume fn calculated from (21) may

become smaller than zero or larger than unity, such that advection treatment becomes necessary as

shown in Figure 6. A simple advection treatment can be achieved by the ¯ux-limiting method9,23 as

follows:

Dtf � jVo= _Qinj; �22�
where

Vo � Vfnÿ1 when _Qin < 0;
V � fnÿ1 ÿ 1� when _Qin � 0:

�
Here V, fnÿ1 and _Qin are the total volume of the element, the fractional volume at the previous time

step and the ¯ow rate in the element respectively. The advection time steps Dtf are calculated in all

the elements and the minimum value among the Dtfs is selected. When the selected Dtf is larger than

the critical advection time step Dtf
c prescribed for numerical stability, Dtf is replaced by Dtf

c . This

Figure 5. De®nition of side in¯ow and out¯ow rates in an element
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prevents the transfer of more ¯uid volume than the acceptor element can receive and the transfer of

more ¯uid than the donor element can give. This simple ¯ux-limiting method is stable, but when the

value of the calculated Dtf is continuously small during the time iterations, the total number of

iterations can become very large, leading to a long computation time.

In this study an iterative advection treatment is proposed. In this technique, if the calculated Dtf is

smaller than Dtf
c , then only the advection treatment is repeated individually apart from the routine for

FEM analysis. During the iterations for advection treatment the velocity and pressure values are ®xed

by assuming that the changes in velocity and pressure are very small since Dtf is small. The merit of

this technique is that the computation time for obtaining the velocity and pressure ®elds by FEM

analysis can be reduced. The advection treatment iterations are carried out until the sum of the Dtfs

reaches Dtf
c or the ¯uid comes into contact with the pseudo wall side. As shown in Figure 7, the

pseudo wall side is de®ned as the side including the two vertex nodes where the velocity is not

calculated for the current time step. Therefore calculation of the side ¯ow rate through the pseudo

wall side is not possible and the iteration must be stopped.

For special cases where the changes in volume advection are very severe in a few elements such

that the ®lling and emptying of the elements are continuously repeated, the computation time

becomes very long. For such cases a forced advection treatment is proposed in this study for effective

numerical analysis. As a similar study, in FIDAP23 an advection adjustment method has been

employed in which the factors representing the fractional area over which the ¯uid crosses the side

are adjusted. In our forced advection treatment the fractional volumes are calculated in each element

by using the prescribed Dtf
c and equation (21), and the fractional volumes of the elements that are

larger than unity and smaller than zero are each adjusted to unity and zero respectively. Then, to

compensate for the ¯uid volume, the fractional volumes of the neighbour elements are adjusted

directly by utilizing weighting factors determined from the side ¯ow rate calculated in the total region

of the side in which the out¯ow exists, under the assumption that each side wet ratio is unity, as

follows:

f A0i � f Ai � Vo

V Ai

_QA
iP4

i�1

_QA
i wA

i

wA
i : �23�

Figure 6. Schematic diagram of (a) over-®lled and (b) over-emptied states in an element
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In (23),

Vo �
VAfA when fA < 0 �over-emptied case�;
VA�fA ÿ 1� when fA > 1 �over-filled case�;

�
wA

i �
1 when _QA

i < 0;

0 when _QA
i � 0;

(
where A is the over-emptied or over-®lled element, Ai is the neighbour element of A, V Ai is the

volume of Ai, VA is the volume of A, _QA
i is the side ¯ow rate calculated in the total region of side i of

A under the assumption that the side wet ratio of side i is unity, f A is the fractional volume of A, Vo is

the compensation volume and wA
i is the weighting factor for side i of A. The advection treatment is

repeated until all over-®lled and over-emptied elements are eliminated. If the element with the

pseudo wall side is over-®lled, than Dtf
c is decreased and the forced advection procedure is repeated.

4.4. Adaptive grid

In general, when using a ®xed grid, in order to obtain good numerical results, a large number of

elements in the grid and the element domain for FEM analysis are required, since the initial elements

must have a ®ne size. For a more ef®cient analysis, in this study an adaptive grid is generated by the

re®nement and mergence of the elements. An adaptive grid implies a grid where the internal and

outer elements are coarse and the surface elements are relatively ®ne. An adaptive grid is regenerated

at each time step when the location of the free surface is changed.

There are some noteworthy merits of the proposed technique using an adaptive grid. First of all, the

accuracy of the numerical results is better than when using a ®xed grid generated homogeneously

with the same total number of elements, since the elements in the surface region for predicting the

free surface and obtaining the velocity ®eld are much ®ner than those in the inside region. Secondly,

the required computation time and memory size are smaller than when using a ®xed grid generated

homogeneously with the same ®ne elements as those in the surface region of the adaptive grid.

Figure 7. Schematic diagram of pseudo wall side
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Thirdly, the size of elements can easily be changed by adjusting the order of surface re®nement and

the re®nement expansion layer.

In order to generate an adaptive grid, ®rst the surface elements, including the line segments of the

free surface, are re®ned and the internal and outer elements that have been re®ned are merged. The

procedure for generating an adaptive grid is summarized as follows.

Step 1. All elements are sorted into three categories: internal, surface and outer elements.

Step 2. The new surface elements at the current time step are re®ned until the re®nement order

reaches the prescribed surface re®nement order.

Step 3. The new internal and outer elements that have been re®ned are merged.

Step 4. The procedure for re®nement expansion is accomplished.

The procedure for re®nement is accomplished by re®ning an element into four elements and the

procedure for mergence is then followed by merging the four re®ned elements. In the process of

re®nement or mergence the difference in re®nement order between an element and a neighbour

element must be zero or unity, since for FEM analysis the element domain, where the total number of

nodes on a side apart from vertex nodes cannot exceed one, is generated from a grid. Then, as shown

in Figure 8, the procedures for re®nement and mergence of an element are carried out if the following

requirements are satis®ed.

(i) Requirements for re®nement of an element:

(a) The category of an element is the surface element and the re®nement order is smaller than

the prescribed surface re®nement order.

(b) The category of an element is either the internal or the outer element and the element

satis®es the condition

N ÿ N a < ÿ1; �24�

where N and Na are the re®nement orders of the element and a neighbour element

respectively.

(ii) Requirements for mergence of an element:

The category of an element is either the internal or outer element and the element satis®es the

condition

N ÿ N a > ÿ1: �25�

Then, in order to increase the stability of the numerical results, the procedure for re®nement

expansion is accomplished. In this procedure, layers of re®ned elements from the free surface are

generated inside the ¯uid region. The total number of expansion layers is prescribed. The procedure

for re®nement expansion increases the number of elements and prevents the elements from being

re®ned too drastically and excessively in the surface region of the element domain. The procedure for

re®nement in the surface region is accomplished stepwise from the zero re®nement order to the

prescribed re®nement order. The procedure for mergence is carried out stepwise from the prescribed

re®nement order. The procedures for re®nement and mergence are also accomplished during the

procedure for advection treatment.

Then the element domain generated from an adaptive grid includes ®ve-node elements. As shown

in Figure 9, in order to treat the ®ve-node elements, the following linear constraint equation24 is used,

U 3
mid � �U 1

vertex � U2
vertex�=2; �26�
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where U3
mid is the velocity of the midside node and U1

vertex and U2
vertex are the velocities of vertex nodes

1 and 2 respectively. The arbitrary velocity inside element A becomes

uA � U 1
vertexN1 � U3

midN3 � U5
vertexN 5 � U4

vertexN 4

� U 1
vertex�N1 � 0�5N3� � U 2

vertex0�5N3 � U 5
vertexN5 � U4

vertexN 4; �27�
where U1

vertex, U 2
vertex, U 3

vertex, U 4
vertex and U5

vertex are the velocities of vertex nodes 1, 2, 3, 4 and 5

respectively and N1, N3, N4 and N5 are the shape functions of vertex nodes 1, 3, 4 and 5 respectively.

From (27) the original connectivity [1, 3, 5, 4] of element A is replaced by [1, 2, 5, 4] and the shape

functions [N1, N3, N5, N4] for calculating the stiffness matrix of element A are replaced by

[(N1 � 0�5N 3), 0�5N3, N5, N4].

4.5. Smoothing of predicted free surface

The side wet ratios to be calculated with the selected ®lling pattern in each element are not

continuous on the common side shared by two elements since they are calculated in each element

Figure 8. Procedures for re®nement of a surface element and mergence of internal and outer elements
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independently. Also, in general, the predicted free surfaces can be expressed in a wavy form. Firstly,

this is due to the fact that in an element the free surface is predicted by the ®lling pattern calculated

only from the scalar functional volume value and the ®lling state of the neighbour elements.

Secondly, for the sake of numerical stability, the speci®c advection of the ¯uid volume in a partially

®lled element into an empty element is constrained. Therefore a smoothing technique is developed in

order to improve the non-smoothness of the predicted free surface. As shown in Figure 10, the

smoothing procedure on the common side shared by two elements is summarized as follows.

Figure 9. Con®gurations of a ®ve-node element and its neighbour elements

Figure 10. Procedure for smoothing of predicted free surface

1140 J. H. JEONG AND D. Y. YANG

Int. J. Numer. Meth. Fluids 26: 1127±1154 (1998) # 1998 John Wiley & Sons, Ltd.



Step 1. The segments of the free surface are connected by using the averaged values of the side

wet ratio:

f s
s �

� f s
a � f s

b �=2 when 0 < f s
a < 1 and 0 < f s

b < 1;
1 when f s

a � 1 or f s
b � 1;

f s
a when f s

b � 0;
f s
b when f s

a � 0;

8>><>>: �28�

where `a' and `b' are the elements sharing a common side `s' and f s
a and f s

b are the side wet

ratios of elements `a' and `b' respectively. In (28), if either f s
a or f s

b is unity, then f s
s

becomes unity in order to prevent the ®lled element from turning into a partially ®lled

element. Also, if f s
a or f s

b is zero, then f s
s becomes f s

b or f s
a respectively.

Step 2. The free surface is smoothed as follows:

X a
smooth � �X p

mid � X n
mid�=2; �29�

where X a
smooth is the smoothed co-ordinate of node `a' of the free surface segment and X

p
mid

and X n
mid are the co-ordinates of the midnodes of free surface segments `p' and `n' that

share the common node `a' respectively. Step 2 may be iterated to obtain a smoother free

surface.

5. NUMERICAL ANALYSIS RESULTS OF PROBLEMS

Two examples, namely radial ¯ow with a point source and the collapse of a dam, have been analysed

using the adaptive element method. Each problem has been analysed using several grids to verify the

ef®ciency of the adaptive element method. The numerical results are compared with theoretical

solutions, experimental results and the numerical results of other cases.

5.1. Radial ¯ow with a point source

In radial ¯ow with a point source the ¯uid ¯ows out from the point source at a constant ¯ow rate.

The constant values of density, viscosity and ¯ow rate used in the numerical analysis are r� 1, m� 1

and Q� 2p respectively and the critical advection time step Dtf
c is 5610ÿ3 s. This is a one-

dimensional ¯ow problem with only the radial velocity component. However, for the two-

dimensional analysis carried out in this study, as shown in Figure 11, the two-dimensional domain

near a point source is used. When it is assumed that steady state ¯ow occurs at each time step, the

theoretical solution17 in cylindrical co-ordinates is given by

Ur � 1=r; R � �p 2t�; P � ÿ2m=R2 � 1
2
�Rÿ2 ÿ rÿ2�; �30�

where Ur, r, R and P are the radial velocity, the radial distance from the point source, the position of

the free surface and the pressure respectively.

In order to compare the numerical results for different cases, this problem has been analysed with a

®xed grid (case I) and an adaptive grid (case II). The initial elements for cases I and II are shown in

Figure 12. The total number of initial elements for case I is sixteen times that for case II. In order to

test the effect of non-uniform elements, the initial grids are generated using elements of non-uniform

shape. For case I the element con®gurations and predicted free surfaces at t� 1�5, 2�5 and 3�5 s are

shown in Figure 13. For case II the adaptive grids are shown in Figure 15. In Figure 14 the change in

adaptive grid at each time step and the surface elements that are ®ner than other elements are shown.

The element con®gurations and predicted free surfaces are shown in Figure 14. As seen in Figures 13

and 15, the element domains of case II are closer to the shape of the predicted free surface for each
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case than those of case I. Also, in case II the elements in the free surface region are ®ner than those in

other regions. The free surface positions predicted in cases I and II are compared with the theoretical

solutions in Figure 16 and Table I and the predicted pressures are compared with the theoretical

solutions in Figure 17. In this problem, in order to compare more exactly the positions of predicted

free surfaces, only step 1 of the smoothing procedure is carried out. The non- smoothness in Figures

16 and 17 occurs fundamentally from using the VOF method with a ®xed grid, in contrast with the

Lagrangian or ALE method in which the free surface can be predicted smoothly by using a movable

grid. The free surface positions and predicted pressures in case II are closer to the theoretical

solutions, since the elements in the surface region that are important for analysis are ®ner than those

in case I. However, for both cases, deviation between the numerical results and theoretical solutions

for pressure exists, since the numerical results are obtained from the transient state governing

equation with a numerically small time step. This deviation can be decreased by using ®ner elements

and smaller time steps. The average values of the total number of nodes and elements and the total

computation time for cases I and II are given in Table II. It is seen that for case II a smaller memory

size and a shorter computation time are required in comparison with case I. Thus the ef®cient use of

elements is veri®ed in the adaptive element method.

Figure 11. Schematic diagram of total and initial ®lled domains and boundary condition on wall

Figure 12. Initial grids in cases (a) I and (b) II
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5.2. Collapse of a dam

The collapse of a dam is a typical problem used for verifying a new method for the analysis of

transient ¯uid ¯ow with a free surface. In this study, three grids for numerical analysis are used.

Cases I and II use ®xed grids, while case III uses an adaptive grid. The numerical results of all cases

Table I. Comparison of deviations between numerical results and theoretical
solutions of free surface in both cases

Fixed grid (case I) Adaptive grid (case II)

Absolute maximum deviation 3�6610ÿ2 2�5610ÿ2

Absolute average deviation 1�0610ÿ2 6�5610ÿ3

Figure 13. Predicted free surfaces and element con®gurations at (a) t� 1�5, (b) 2�5 and (c) 3�5 s in case I
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are compared with the experimental results of Martin and Moyce25 and the predicted free surface

positions of cases II and III are compared with those of case I, since neither experimental data nor

theoretical solutions exist and the elements of case I are the ®nest amongst the three cases. In case II

the total number of elements is only a quarter of that in case I, while in case III the total number of

elements is only 1=64 of that in case I. As shown in Figure 18, the relative column height is b=a� 2.

Table II. Comparison of results obtained in both cases

Fixed grid (case I) Adaptive grid (case II)

Total number of nodal points 1152 388
Total number of elements 548 231
Total number of control volumes 606 326
Relative computational time 1 0�7

Figure 14. Predicted free surfaces and adaptive grids at (a) t� 1�5, (b) 2�5 and (c) 3�5 s in case II
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The density of water, its viscosity and the acceleration due to gravity are 1000 kg mÿ3,

0�001 kg mÿ1 sÿ1 and 9�8 m sÿ2 respectively and the critical advection time step Dtc is 2610ÿ4 s.

Figure 19 shows the initial element domains for cases I, II and III. With the dimensionless time and

length de®ned as T � t
���p 2g=H�, for case I the element con®gurations and predicted free surfaces at

T� 1, 2 and 2�9 are shown in Figure 20 and the velocity vectors in Figure 21. It is seen that the

elements are ®ne and the velocities stable, since the elements in the initial grid are very ®ne. The

predicted free surfaces are also seen to be very smooth and reasonable. Figures 22 and 23 show the

element con®gurations, predicted free surfaces and velocity vectors for case II. In comparison with

case I, the predicted free surfaces and velocities in regions near the wall are less smooth and more

inaccurate. In case III the surface re®nement order and re®nement expansion layer are three and two

respectively. The adaptive grids at each time step are shown in Figure 24. It is seen that the elements

in the free surface region and re®nement expansion layer are ®ner than in other regions. Figures 25

Figure 15. Predicted free surfaces and element con®gurations at (a) t� 1�5, (b) 2�5 and (c) 3�5 s in case II
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and 26 show the element con®gurations, free surfaces and velocity vectors for case III. It can be seen

that the element domain where the elements in the surface region are ®ne is generated ef®ciently and

the free surface and velocity ®eld are predicted in a stable and effective manner. The positions of the

predicted free surface along the bed are compared with Martin and Moyce's experimental results25 in

Figure 27. The predicted positions in cases I and III are very close to the experimental results.

However, the numerical results for case II show some deviations from the experimental results, since

the size of the elements is not suf®ciently small to correctly predict the ¯ow phenomena in the

collapse of a dam. In Figure 28 the predicted free surface positions of cases II and III are compared

with that of case I. The predicted free surface position of case III is closer to that of case I, since ®ner

elements are used in the free surface region. The average values of the total number of nodes and

elements and the total computation time in all cases are given in Table III. As can be seen, the largest

Figure 16. Predicted free surfaces (ÐÐÐÐ) compared with theoretical solutions (ÐÐÐÐ) in cases (a) I and (b) II

Figure 17. Predicted pressures versus time compared with theoretical solutions in cases (a) I and (b) II
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memory size and computation time were required for case I which had the largest number of elements

in the initial grid. Case III was composed of the smallest number of elements, since the elements were

used in an ef®cient way. However, case III required a longer computation time than case II by about

40 per cent because of the greater time consumed in the procedures of re®nement and mergence of

elements.

Finally, the numerical results of case III are much closer to those of case I and the experimental

results compared with case II which employs more elements. The memory size required for case III is

also smaller than that for cases I and II, while the total computation time is much shorter than that for

case I and a little longer than that for case II. These numerical results have shown that an adaptive

grid can be used ef®ciently for the analysis of transient ¯uid ¯ow with a free surface.

CONCLUSIONS

The VOF method is adopted for the ®nite element analysis of transient ¯uid ¯ow with a free surface.

The proposed ®nite element analysis has two main features. First, an adaption technique for

generating an adaptive grid is incorporated to capture a higher resolution of the free surface

con®guration. An adaptive grid in which the elements in the surface region are ®ner than those in

other regions is created through procedures of re®nement and mergence of elements. Secondly, the

three techniques based on the VOF method are newly developed to increase the accuracy of the

Figure 18. Schematic diagram of initial water column and wall boundary condition

Table III. Comparison of results obtained in all cases

Fixed grid (case I) Fixed grid (case II) Adaptive grid (case III)

Total number of nodal points 2216 596 564
Total number of elements 2094 536 443
Total number of control volumes 12800 3200 970
Relative computational time 10�3 1 1�4
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Figure 19. Initial grids and ®lled regions in cases (a) I, (b) II and (c) III
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Figure 20. Predicted free surfaces and element con®gurations at T� (a) 1, (b) 2 and (c) 2�9 in case I

Figure 21. Velocity ®elds at (a) T� (a) 1, (b) 2 and (c) 2�9 in case I
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Figure 22. Predicted free surfaces and element con®gurations at T� (a) 1, (b) 2 and (c) 2�9 in case II

Figure 23. Velocity ®elds at T� (a) 1, (b) 2 and (c) 2�9 in case II
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Figure 24. Predicted free surfaces and adaptive grids at T� (a) 1, (b) 2 and (c) 2�9 in case III
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Figure 25. Predicted free surfaces and element con®gurations at T� (a) 1, (b) 2 and (c) 2�9 in case III

Figure 26. Velocity ®elds at T� (a) 1, (b) 2 and (c) 2�9 in case III
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analysis. The ®rst approach is the ®lling pattern technique to predict the free surface by considering

the geometric shape of each quadrilateral element. The second approach is the advection treatment

technique to calculate the ¯uid advection iteratively and forcedly. The third approach is the

smoothing technique to improve the non-smoothness of the predicted free surface. In particular, for

complex problems the accuracy of the numerical results can be improved by the additional re®nement

of elements inside the speci®c domain. Radial ¯ow with a point source and the collapse of a dam

Figure 27. Predicted front position variation versus time compared with experimental results of Martin and Moyce25

Figure 28. Comparison of predicted free surfaces in all cases

TRANSIENT FLUID FLOW WITH FREE SURFACE 1153

# 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 1127±1154 (1998)



have been analysed. The numerical results agree well with the theoretical solutions and experimental

results. The numerical analyses were carried out for several cases using different grids. Through

comparisons of the numerical results of several cases, the ef®ciency of the proposed method is

checked and it can be further applied to problems of transient ¯uid ¯ow with a free surface.
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